

Tulipss: Tunable Light-guide Image Processing Snapshot Spectrometer

Presenter: Tomasz S. Tkaczyk

PI: Tomasz S. Tkaczyk

Team Members: David Alexander, Christopher Flynn, Jiawei Lu, Ye Wang, Razvan I Stoian, Desheng Zheng, Jeffrey Luvall

Program: IIP-16

Problem to Solve

Overall Project Goals

- Develop a low-resource highly-capable tunable hyperspectral imager for a range of Earth remote sensing observations.
- Performance goals are to operate across the wavelength range 400 1700nm, with up to 1.2 nm spectral resolution. The spatial sampling depends on orbit/altitude but will typically range between 30m and 1000 m resolution.
- Technologies include innovative fiber optic light-guide, snapshot imaging and tunability for specific line selection and spatial/spectral pixel distribution.

Last Year Challenges

- Improve Light Throughput
- Implement a field prototype for engineering flights / targeted applications like smart farming / disaster response etc.

TuliPSS Technology

 Custom fiber light-guide reformats image to create void spaces to allow spectral cube acquisition in a single – snapshot (cube is acquired instantaneously with noscanning)

TuliPSS Technical Data

 Lab Demonstration, VIS Gen-I (2018-2019)

Opt. Express 27, 15701-15725 (2019)

- Integration time 50-750 ms (light throughput 2.4%-3.2%)
- Max. frame rate, 3.4 images/second
- Upto 32,000 cores, 60+ spectral channels 480-670 nm
- Initial validation show good spectrum correlation with reference measurements
- On-a-bench demonstration

Field Instrument, VIS Gen-II (2020)

- Integration time 0.5-10 ms (light throughput upto 60%)
- Frame rate, 30 images/sec. (USB 3.1), 100 images/sec. (cameralink)
- Upto 32,000 cores, 30-60 spectral channels / 460-610, 540-650, 480-670 nm (in progress), range depend on filter/prism
- Preliminary field experiments performed validation in progress
- Field instrument (battery powered, laptop-control)

Throughput Improvement

Configuration Magnification	Percentage from Fiber Bundle to sensor
√ 1x	3.2 %
0.5x	12.2 %
0.8x	13.2 %
1.25x	18.2 %
2x	38.6 %
4x	54.5 %
0.25x	14.3 %

Design Summary (diffraction limited):

NA = 0.25 FOV = 20mm

Distortion < 0.02%

No vignetting for all fields

Total Axial Length = 322mm

Corrected wavelength: 400 - 700 nm

Camera position adjustment – focusing - for infrared wavelengths

Packaging for Field Imaging / Flights

Getting Ready to Engineering Flights
Enabled by EAA, Pearland Regional Airport, and
David Foster

- Flight preparation / engineering flights setup was suspended due to Covid-19
- Presented results are after resuming partial lab operations: videos / images acquired 06-03-2020 through 06-23-2020 around Rice's Campus

10ms exposure, global shutter at **30 frames / sec.** frame rate, **31 spectral** channels from **460nm to 610nm**

Handheld, real-time acquisition

- 10ms exposure, global shutter at 30 frames / sec. frame rate
- Individual image incorporates
 27,530 fiber cores. 36 images
 used to create mosaic.
- 31 spectral channels from 460nm to 610nm

Handheld, real-time acquisition

- Overcast Imaging through window during storm / rainy weather
- 10ms exposure, global shutter at 30 frames / sec. frame rate
- Individual image incorporates
 27,530 fiber cores.
- 31 spectral channels from 460nm to 610nm

Normalized Spectra

Handheld, real-time acquisition

- 10ms exposure, global shutter at 30 frames / sec. frame rate
- Individual image incorporates **27,530** fiber cores.
- 31 spectral channels from 460nm to 610nm

Ongoing Research / Future Plans

Radiometric System's model

f number of objective	1.4
Transmission of objective	0.7
Diameter of Photomask (um)	10
NA of fiber	0.28
Diameter of fiber (um)	10
Transmission of fiber	0.75
NA of collecting lens	0.128
Transmission of Reimaging part	0.147
Camera Quantum Efficiency	PCO_Camera
Irradiance	Sea level/Concrete/Tree
Focal Length of focal lens(mm)	144
Apex Angle of Prism	11.3
Exposure Time (ms)	10
Re Magnification	0.8
Pitch Size of Camera (um)	6.5

Ongoing Research / Future Plans

SWIR System Design and Assembly

- 1. Image mapper
- 2. Tube lens mounted on translation stage
 - defocusing for NIR/SWIR
- 3. Motorized filter wheel with 10 filters
- 4. Motorized translation stage for dispersers
- Folding mirror
- 6. Imaging lens mounted on translation stage
 - Refocusing for NIR/SWIR
- 7. VIS/SWIR camera
- 8. Controllers for precision translation/rotation stages
- 9. NVIDIA computer
 - Designed for AI applications
 - Controls electronics
 - Acquires images from camera
 - Image reconstruction
- 10. Reference RGB camera

Tuning Implementation

Changing distance between ribbons

Summary

- VIS-Gen II TuLIPSS system was packaged and set-up for field imaging experiments
- TuLIPSS is capable of rapid snapshot spectral imaging and sub-millisecond integration times (throughput was improved by 5-20 fold depending on optics configuration)
- VIS Field imaging experiments are ongoing and TuLIPSS will be validated in number of applications including smart farming, geology tests and spectroscopy of moon flashes
- SWIR system is being intergrated
- Radiometric system model is being developed
- Implementation of dynamic / tuned system for smart imaging is in progress